
Dissipation can enhance quantum effects

Joachim Ankerhold
Physikalisches Institut, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany

Eli Pollak
Chemical Physics Department, Weizmann Institute of Science, 76100, Rehovoth, Israel

�Received 22 November 2006; revised manuscript received 23 January 2007; published 9 April 2007�

Usually one finds that dissipation tends to make a quantum system more classical in nature. We study the
effect of momentum dissipation on a quantum system. The momentum of the particle is coupled bilinearly to
the momenta of a harmonic oscillator heat bath. For a harmonic oscillator system we find that the position and
momentum variances for momentum coupling are, respectively, identical to momentum and position variances
for spatial friction. This implies that momentum coupling leads to an increase in the fluctuations in position as
the temperature is lowered, exactly the opposite of the classical-like localization of the oscillator, found with
spatial friction. For a parabolic barrier, momentum coupling causes an increase in the unstable normal mode
barrier frequency, as compared to the lowering of the barrier frequency in the presence of purely spatial
coupling. This increase in the frequency leads to an enhancement of the thermal tunneling flux, which below
the crossover temperature becomes exponentially large. The crossover temperature between tunneling and
thermal activation increases with momentum friction so that quantum effects in the escape are relevant at
higher temperatures.
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I. INTRODUCTION

The effect of spatial dissipation on the classical �1� and
quantum �2� dynamics of a system is well understood. On a
microscopic level, dissipation arises from bilinear coupling
of the system coordinate to the displacement coordinates of a
harmonic bath. Classically the bath modes obey forced oscil-
lator equations of motion, which may be solved formally in
terms of the motion of the system. These are then inserted in
the system equation of motion which then takes the form of
a generalized Langevin equation.

Over 20 years ago, Caldeira and Leggett �3� took advan-
tage of this equivalence to study the effect of a dissipative
bath on the quantum dynamics of the system, paying special
attention to the quantum tunneling effect. Their central con-
clusion was that dissipation reduces the tunneling probabil-
ity; however, it does not destroy it completely. Hence, the
possibility of observing macroscopic quantum tunneling.

The detrimental effect of an interaction between the sys-
tem and its environment on quantum phenomena makes in-
tuitive sense. Consider first the localization of a particle in
space. It is well known �4� that the position variance of a
dissipative harmonic oscillator becomes smaller as the dissi-
pation strength is increased. In the limit of very large Ohmic
friction, the bath can localize the particle completely, without
violating the uncertainty principle �5�. The bath may be
thought of as creating an effective particle with a very large
mass, and such a heavy particle may be localized.

One has a similar picture of how the environment de-
stroys tunneling. For a dissipative parabolic barrier, it is well
known that diagonalization of the system-bath Hamiltonian
leads to an unstable mode, whose frequency decreases as the
coupling strength increases �6,7�. Tunneling occurs by trans-
mission through this collective unstable mode. Since its fre-
quency is smaller, it is a broader barrier, the action needed to
cross it increases, and the tunneling probability decreases �8�.

The same qualitative picture holds at low temperatures be-
low the crossover temperature separating the tunneling and
activated barrier crossing regimes �2,3,9�. Spatial dissipation
also reduces the crossover temperature �10�; it is proportional
to the collective-mode barrier frequency. This lowering also
fits in with the general observation that dissipation causes
quantum systems to behave more like classical systems �3�.

All of these conclusions are based on an extensive study
of the quantum dynamics of dissipative systems, where the
Hamiltonian can be brought to the form of bilinear coupling
between the system and bath coordinates. There is a qualita-
tive difference between this type of spatial dissipative cou-
pling and bilinear momentum coupling of a system coupled
to a bath �11�. Recently, Makhnovskii and Pollak �12� have
shown that bilinear momentum coupling leads to stochastic
acceleration �13,14� without any violation of the second law
of thermodynamics �15�. In contrast to spatial coupling,
which effectively increases the mass of the system, momen-
tum coupling reduces it, and in the limit of an “Ohmic”
coupling, the effective mass goes to zero. Hence, the system
can undergo stochastic acceleration. This observation indi-
cates that perhaps momentum coupling can lead to some
rather anti-intuitive quantum mechanical results. If it reduces
the effective mass, it should amplify quantum effects rather
than destroy them. This is the topic of this paper.

In Sec. II we study the classical and quantum dynamics of
a harmonic oscillator bilinearly coupled to the momentum of
a harmonic bath. We find that as already noted in a different
context by Cuccoli et al. �11�, here too the effective mass is
reduced such that increasing the momentum coupling in-
creases the thermal variance of the position of the quantum
particle instead of decreasing it. In Sec. III we study the
dynamics of a parabolic barrier. Momentum coupling in-
creases the thermal flux of the particle across the barrier as
compared to the thermal flux in the absence of coupling.
Most interestingly, the bath increases the magnitude of the
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normal-mode parabolic barrier frequency, implying that it
becomes thinner and therefore the tunneling flux through the
barrier increases. We show that this is indeed the case both
above and below the crossover temperature, which now in-
creases with increasing coupling strength. We end in Sec. IV
with a summary.

II. MOMENTUM COUPLING AND THE HARMONIC
OSCILLATOR

A. Preliminaries

Our model is that of a harmonic oscillator with mass-
weighted momentum P, coordinate Q, and harmonic fre-
quency � interacting bilinearly with a harmonic oscillator
heat bath through the momentum �12�. The Hamiltonian then
takes the form

H =
1

2�P2 + �2Q2 + �
j=1

N

�pj − djP�2 + �
j=1

N

� j
2xj

2� , �1�

where pj ,xj, j=1, . . . ,N, are the mass-weighted momentum
and coordinate of the jth bath oscillator whose frequency is
� j. The dj’s are the bilinear coupling coefficients to the par-
ticle’s momentum.

Before considering the dynamics of this Hamiltonian, it is
appropriate to put it into the context of previous studies of
dissipative systems. The coupling of the system to the bath
through the momentum of the bath has been studied previ-
ously in a variety of contexts. In an early paper, Leggett �16�
considered the possibility of two coupling terms, taking the
form Q� j=1

N djpj + P� j=1
N cjxj. He then distinguishes between

normal dissipation, where the Langevin equation of motion
is derived for the spatial system coordinate Q and anomalous
dissipation, where the Langevin equation of motion is de-
rived for the spatial system momentum. Neither of these de-
scribe the model Hamiltonian given in Eq. �1� above. In our
model, the coupling term has the form P� j=1

N djpj, leading to
qualitatively different dynamics.

A different model has been considered by Ford et al. �17�.
In their case the coupling to the bath takes the quadratic form
�P−� j=1

N djpj�2. It describes the physics of blackbody radia-
tion in which the momentum of the particle is coupled to the
magnetic field of the vacuum radiation. Such coupling also
differs from that given in Eq. �1�. The counterterm appearing
in the model of Ford et al. causes a coupling between the
bath modes themselves and allows one by a change of vari-
ables �17� to recast the problem into one which is equivalent
in form to the standard dissipative Hamiltonian studied in
detail in Refs. �3,4�.

More recently, Cuccoli et al. �11� have studied a momen-
tum coupling model which is identical to Eq. �1�. They term
this model anomalous dissipative coupling. However, as al-
ready discussed above, the dissipation of this model differs
from the one studied by Leggett �16�. To distinguish between
the two, we have used the terminology momentum dissipa-
tion for Eq. �1�.

The formal solution of Hamilton’s equations of motion for
the jth bath oscillator is �12�

xj�t� = xj�0�cos�� jt� +
ẋj�0�

� j
sin�� jt� −

dj

� j
�

0

t

dt�Ṗ�t��

�sin�� j�t − t��� . �2�

The equations of motion for the particle are

Q̇ = P − �
j=1

N

djẋj , �3�

Ṗ = − �2Q . �4�

Equation �4� together with

MQ̈�t� + �2Q = MfP�t� − �
0

t

dt�Ṗ�t��M�P�t − t�� �5�

provides a generalized Langevin equation description for the
motion of a particle with effective mass

M = 	1 + �
j=1

N

dj
2
−1

. �6�

The noise is represented by the momentum fP random accel-
eration:

fP�t� = �
j=1

N

dj� j
2�xj�0�cos�� jt� +

ẋj�0�
� j

sin�� jt�� , �7�

which has zero mean. Its correlation function is

��fP�t�fP�0�� = �
j=1

N

dj
2� j

2 cos � jt 
 �P�t� . �8�

The brackets denote averaging with respect to the thermal
distribution �e−�H�. Finally, in Eq. �5� we also used the nota-
tion

�P�t� = �
0

t

dt��P�t�� = �
j=1

N

dj
2� j sin�� jt� . �9�

The solution of the generalized Langevin equation �5�
may be obtained by means of the Laplace transformation

f̂�s�=�0
�dte−stf�t�. Using the relation �̂P�s�= �̂P�s� /s one

finds from Eq. �5� that the Laplace transform of the particle’s
coordinate is

Q̂�s� =
Q̇�0� + sQ�0� + f̂ P�s�

s2 + �2� 1

M
−

�̂P�s�
s

� =
Q̇�0� + sQ�0� + f̂ P�s�

s2	1 + �2�
j=1

N
dj

2

s2 + � j
2
 .

�10�

Noting that

�Q̇2� =
�P2�
M

=
1

�M
, �11�

one readily finds that the classical velocity correlation func-
tion is
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�Q̇�t�Q̇�0�� = i.l.t.� s

�
·

1

M
−

�̂�s�
s

s2 + �2� 1

M
−

�̂P�s�
s

�� , �12�

where i.l.t. stands for “inverse Laplace transform.”
To express results in the continuum limit it is useful to

define a momentum spectral density as

JP��� =
	

2 �
j=1

N

dj
2� j

3
�� − � j� , �13�

where 
�x� is the Dirac delta-function. As a result, the mo-
mentum function �P�t� may be expressed in terms of the
spectral density as

�P�t� =
2

	
�

0

�

d�
JP���

�
cos��t� . �14�

B. Normal-mode transformation

Additional insight as well as solution of the associated
quantum dynamics is facilitated by considering the normal-
mode representation. The Hamiltonian given in Eq. �1� has a
quadratic form and so may be diagonalized. For this purpose
we define frequency-weighted coordinates and momenta as

Q̄ = �Q, P̄ = P/� , �15�

x̄j = � jxj, p̄j = pj/� j, j = 1, . . . ,N , �16�

so that the coordinate part of the Hamiltonian has unit fre-
quency:

H =
1

2��2P̄2 + �
j=1

N

� j
2	p̄j −

dj

� j
�P̄
2

+ Q̄2 + �
j=1

N

x̄j
2� .

�17�

The N+1 normal modes and associated momenta are de-
noted as yj, pyj, j=0, . . . ,N, such that the normal-mode form
of the Hamiltonian is

H =
1

2�
j=0

N

�� j
2pyj

2 + yj
2� �18�

and the � j’s are the normal-mode frequencies. This transfor-
mation implies that the vector of normal-mode momenta py
is an orthogonal transformation of the frequency-weighted
momenta such that

py = U	P̄

p̄

 , �19�

where U is an �N+1�� �N+1� orthogonal transformation
matrix.

Following the same considerations as in the Appendix of
Ref. �18� one readily finds that the normal-mode frequencies
are the N+1 solutions of the equation

�k
2 =

�2

1 + �2�
j=1

N
dj

2

� j
2 − �k

2

. �20�

The elements of the transformation matrix are then given by

ukj =
dj� j�

� j
2 − �k

2uk0, j = 1, . . . ,N, k = 0, . . . ,N , �21�

uk0
2 = 	1 + �2�

j=1

N
dj

2� j
2

�� j
2 − �k

2�2
−1

, k = 0, . . . ,N . �22�

By considering the 00 element of the �N+1�� �N+1� matrix
�T�+s2I�−1 �where T� is the matrix of second derivatives of
the kinetic energy of the Hamiltonian with respect to the
frequency scaled momenta� one finds the important identity

�
j=0

N
uj0

2

s2 + � j
2 = �s2 + �2	 1

M
−

�̂P�s�
s


�−1

. �23�

This identity then leads directly to all classical results of
interest in the continuum limit �19�.

For this purpose we also define a normal-mode momen-
tum function as

K�t� = �
j=0

N

uj0
2 cos�� jt� . �24�

A spectral density of the normal modes is then defined as
�20�

���� =
	

2 �
j=0

N

uj0
2 � j�
�� − � j� − 
�� + � j�� . �25�

One now notes that the Laplace transform of the normal-
mode momentum function may be expressed directly in
terms of the original momentum function:

K̂�s�
s

= �
j=0

N
uj0

2

s2 + � j
2 = �s2 + �2	 1

M
−

�̂P�s�
s


�−1

. �26�

Using the Fourier decomposition of the Dirac 
 function
�	
���=�0

�dt cos��t�� we find that the spectral density of the
normal modes may also be expressed in the continuum limit
as

���� = Re��K̂�i��� . �27�

We further note that at equilibrium,

�yj
2� = kBT, j = 0, . . . ,N , �28�

�ẏ j
2� = � j

4�pyj

2 � = � j
2kBT, j = 0, . . . ,N . �29�

With these preliminaries it becomes straightforward to
solve for thermal correlation functions. Since the Hamil-
tonian is diagonal in the normal modes, one has trivially that
the solution of the jth normal mode is
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yj�t� = yj�0�cos�� jt� +
ẏ j�0�

� j
sin�� jt�, j = 0, . . . ,N .

�30�

The system coordinate is just a linear combination of the
normal modes,

Q�t� =
Q̄�t�
�

=

�
j=0

N

uj0yj�t�

�
, �31�

so that

�Q�t�Q�0�� =

�
j=0

N

uj0
2 �yj

2�cos�� jt�

�2 =
K�t�
��2 . �32�

Similarly

�Q̇�t�Q̇�0�� = −
K̈�t�
��2 . �33�

These properties of the normal-mode transformation become
very useful also when considering the barrier crossing dy-
namics, as described in Sec. III, below.

C. Quantum dynamics

In the quantum regime one may work with the normal
modes and use the quantum instead of the classical expres-
sions �28� and �29�. For the equilibrium variances the proce-
dure is then as follows. From the quantum mechanical ex-
pressions

�yj
2� =


� j

2
coth	
�� j

2

 , �34�

it follows that

�Q2� =



2�2�
j=0

N

uj0
2 � j coth	
�� j

2

 . �35�

Using the decomposition �21�

coth�	x� =
1

	x
+

2x

	
�
k=1

�
1

x2 + k2 , �36�

we arrive at

�Q2� =
1

��2�1 + 2�
j=0

N

uj0
2 � j

2�
k=1

�
1

� j
2 + �k

2� , �37�

with the Matsubara frequencies �k=2	k / �
��. Interchanging
the sums, using the fact � j=0

N uj0
2 =1, and using the identity

�23� gives us

�Q2� =
1

��2�1 + 2�
k=1

� � �2	 1

M
−

�̂P��k�
�k



�k

2 + �2	 1

M
−

�̂P��k�
�k


�� .

�38�

It is worthwhile to derive a similar expression for the mo-
mentum. In this case,

�P2� = �2�
j=0

N

uj0
2 �pyj

2 � , �39�

with �pyj

2 �= �
 /2� j�coth�
�� j /2�. It follows that

�P2� =



2
�2�

j=0

N
uj0

2

� j
coth	
�� j

2



=
1

�
�1 + 2�2�

j=0

N

�
k=1

�
uj0

2

� j
2 + �k

2� , �40�

where we used the identity �obtained from Eq. �23� in the
limit that s→0� that

�
j=0

N
uj0

2

� j
2 =

1

�2 . �41�

Finally using again the identity �23� one obtains

�P2� =
1

��1 + 2�2�
k=1

�
1

�k
2 + �2	 1

M
−

�̂P��k�
�k


� . �42�

It is instructive to derive the quantum mechanical corre-
lations along an alternative route, which for spatial friction
has been discussed in Refs. �2,19� and only exploits funda-
mental principles of quantum statistical mechanics. Namely,
since the equations of motion for the Heisenberg operators
Q�t� and P�t� are linear, the following is true: �i� Due to
Ehrenfest’s theorem, the quantum mechanical averages obey
classical equations of motion, �ii� correlation functions can
be obtained from the quantum version of the fluctuation dis-
sipation theorem, and �iii� mean values and second-order
correlations completely determine the quantum dynamics
since all random forces are related to a stationary Gaussian
process.

When using �ii� one has to take into account that accord-
ing to Eq. �3� and in contrast to spatial friction the time
derivative of Q is not identical to P. Hence, to apply the
fluctuation dissipation theorem we do not start from the
equation of motion in position �5�, but from the correspond-
ing expression in momentum, i.e.,

�P̈�t�� +
�2

M
�P�t�� − �2�

0

t

dt��P�t����P�t − t�� = 0, �43�

and calculate according to �i� the classical response
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�P�t�� = �
0

t

dt��P�t − t��F�t�� �44�

to an external force F�t� applied for t�0. In Fourier space

the above equation reads �P̃����= �̃P���F̃��� so that

�̃P��� =
�2

�2/M − �2 − �2�̃P���
, �45�

with �̃P���= �̂P�−i�� / �−i��.
According to �ii� it is now the symmetrized momentum

correlation SP�t�= �1/2��P�t�P�0�+ P�0�P�t��, which is re-
lated to the imaginary part of the response function �̃P= �̃P�
+ i�̃P� via

S̃P��� = 
 coth��
�/2��̃P���� . �46�

Further, due to Eq. �44�, the antisymmetrized momentum
correlation function AP�t�= �1/ i��P�t� , P�0�� is related to the
response function via

�P�t� = −
2



��t�AP�t� , �47�

with the step function ��·�. Thus, in the time domain we
arrive at the general expressions

SP�t� =



2	
�

−�

�

d��̃P����coth��
�/2�cos��t� �48�

and

AP�t� = −



2	
�

−�

�

d��̃P����sin��t� , �49�

from which following �iii� all real-time correlations

can be derived—e.g., �Q�t�Q�0��= �Ṗ�t�Ṗ�0�� /�4= �−S̈P�t�
− iÄP�t�� /�4. For analytical calculations it is sometimes
more convenient to work with representations based on
Laplace transforms: namely,

ÂP�s� = −



2
�̂P�s� ,

ŜP�s� =
1

�
�

n=−�

�
s

�n
2 − s2 ��̂P�s� − �̂P���n��� , �50�

where we used that �̂P�s�= �̃P�is�.
By considering SP�0�=−lims→�sŜP�s� one obtains the

equilibrium variance in momentum

�P2�� =
1

�
�

n=−�

�

�̂P���n�� =
1

�
+

2�2

�
�
n=1

�
1

�2	 1

M
−

�̂��n�
�n


 + �n
2

.

�51�

which is, of course, identical to Eq. �42�. For the position

�Q2��=−S̈P�0� /�4 one must be careful when taking the limit

in S̈P�0�=lims→�s3ŜP�s� due to singularities which must be
properly subtracted. One gets

�Q2�� =
2

��4 �
n=−�

�

��2 − �n
2�̂P���n���

=
1

�2�
+

2

�
�
n=1

�
1

M
−

�̂P��n�
�n

�n
2 + �2� 1

M
−

�̂P��n�
�n

� , �52�

which is identical to Eq. �38�. When comparing the above
expressions with those derived for spatial friction �2,19�, one
observes that they can be related to each other by �Q↔P,
which, of course, is a direct consequence of the symmetry of
the Hamiltonian �1�. This means, though, that all findings
known for spatial friction and, e.g., Ohmic damping can be
directly translated to momentum friction. We will discuss
explicit results in the next section.

D. An example

To obtain a feeling for the various results presented in this
section it is worthwhile to consider the specific case of a
momentum density with a cutoff:

JP��� =
	

2
��3���c − �� , �53�

where ��x� is the Heaviside function. One then finds that the
Laplace transform of the momentum function is

�̂P�s� = �s��c − s arctan	�c

s

�

and the mass factor

M = �1 + ��c�−1,

explicitly demonstrating that in the limit that the cutoff fre-
quency goes to infinity, the effective mass goes to zero.

Now, let us first look at the friction dependence of the
Laplace transform �̂P�s� which directly provides the momen-
tum variance and the functions AP�t� and SP�t�. From

1

M
−

�̂P�s�
s

= 1 + �s arctan��c/s� , �54�

we see that in the limit �c→0 the friction term in �̂P com-
bines with the potential term to yield the effective frequency
�eff=��1+��c of an undamped harmonic oscillator. The
corresponding variance �P2� as well as AP�t� and SP�t� is thus
trivial. In the opposite limit of very large �c�� ,��2 one
has in �̂P the expression s2+�2+�2�	s /2, which coincides
with the form of the response function for spatial friction in
the Ohmic case �friction constant �s� with the translation
�s=�2�	 /2. Thus, the corresponding results can be read off
from the literature �2,4�. In particular, for large cutoff and
��2	 /2�1 the time-dependent correlations decay to zero
monotonously, while for ��2	 /2�1 they decay via damped
oscillations. In contrast to AP�t� which displays only classical
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dynamics, SP�t� contains an additional contribution depend-
ing on the Matsubara frequencies that becomes relevant at
lower temperatures. In the limit of zero temperature SP�t�
then decays in time no longer exponentially but algebraically
�1/ t2. Further in the limit of zero temperature one has for
the momentum variance

�P2�0 �
2


�	2 ln	�2�2	2

2

 . �55�

In essence, momentum friction gives for momentum correla-
tions the same results as spatial coupling for position corre-
lations. The same is true when the ratios �c /�, �c /��2 de-
crease, but are still large, and one compares momentum
friction with � ,�c with the well-known Drude model for
spatial friction, JD=�s� exp�−� /�c�, with �s=��2	 /2.

Let us now turn to �Q2�, for which the limit �c→� can-
not be taken. We gain

�Q2� = �P2�/�2 +
2�4�

�
�
n=1

�
�n arctan��c/�n�

�n
2 + �2 + �2��n arctan��c/�n�

,

�56�

which for zero temperature, where the sum over Matsubara
frequencies must be replaced by integrals according to
�2/
��� f��n�→ �1/	��d�f���, reads for strong friction �but
still �c���2�

�Q2�0 �

�4�

2
ln	 2�c

	��2
 . �57�

When dealing with spatial friction, the momentum variance
for a Drude model with �s=��2	 /2 is given by �P2�spatial

��
�2� /2�ln��c /�� �2�. One thus notes that the roles of the
momentum and position variances are interchanged when
considering the momentum coupling model. In Fig. 1 the
position and momentum variances are shown for momentum
coupling with the spectral density �53� together with

spatial coupling with a Drude spectral density, JD
=�s� exp�−� /�c�. Note that the latter one is, apart from its
widespread use, a sort of minimal model for spatial friction
leading to well-behaved variances. In the case of momentum
coupling the spectral density �53� plays a similar role. Both
models give identical results for sufficiently large cutoff and
�s=�2�	 /2—i.e., �2�P2�momentum���= �Q2�spatial��2�	 /2�.
They differ though in the low-temperature range for the vari-
ances �Q2�momentum and �P2�spatial, which are only well be-
haved for a finite cutoff. Of course, when for spatial friction
a spectral density is taken that produces the same damping
dependence in the response function as the one given by Eq.
�53�, we would obtain fully identical results. Accordingly,
position variances are enhanced for momentum coupling and
suppressed for spatial coupling and vice versa for the mo-
mentum variances. One also observes that at low tempera-
tures the momentum variance for momentum friction is sup-
pressed compared to the position variance for spatial friction
within a Drude model �see �57��. Accordingly, the uncer-
tainty product for T=0,

�Q2�0�P2�0 =

2

	2 ln	 2�c

	��2
ln		2�2�2

2

 , �58�

is smaller compared to the spatial case �Drude damping� by
the factor �1−ln�	�� /2� / ln��c /���.

III. CLASSICAL AND QUANTUM RATE THEORY

A. Classical rate theory in the presence of momentum coupling

We first consider the case of a parabolic barrier Hamil-
tonian

H =
1

2�P2 − �‡2Q2 + �
j=1

N

�pj − djP�2 + �
j=1

N

� j
2xj

2� . �59�

In conventional transition-state theory �TST� one uses the
system coordinate as the reaction coordinate and the dividing
surface is taken to be perpendicular to it. The thermal unidi-
rectional flux through the dividing surface is �22,23�

FTST = �
−�

�

dPdQ�
j=1

N

dpjdxje
−�H
�Q�Q̇��Q̇�

=
1

��M
�
j=1

N 	 2	

�� j

 . �60�

It is noteworthy that the thermal flux through the dividing
surface is larger by the factor 1 /�M as compared to the
conventional TST flux in the presence of only spatial cou-
pling to the harmonic bath �F0=�MFTST�. Momentum cou-
pling causes an enhancement of the reaction rate.

The minimal unidirectional thermal flux is obtained by
transforming the Hamiltonian to normal modes. Due to the
negative force constant associated with the barrier, one will

FIG. 1. Position variances �left, scaled with 
 /�� and momen-
tum variances �right, scaled with 
�� for momentum friction �solid
lines� and for the corresponding spatial case �dotted lines� for vari-
ous values of the friction strength ��=0.5,2 ,7: left, solid from
bottom to top; left dotted from top to bottom; right, solid from top
to bottom; right, dotted from bottom to top. The cutoff frequency is
�c /�=10. For the spatial case a model with Drude damping �cutoff
�c� is used with equivalent friction strength �s=��2	 /2.
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now find after diagonalization N stable modes with frequen-
cies � j and one unstable mode with barrier frequency �‡. The
variational TST �VTST� flux is obtained by considering the
flux perpendicular to the unstable mode, and one finds that

FVTST =
1

�
�
j=1

N 	 2	

�� j

 . �61�

By considering the determinant of the second derivative ma-
trix of the kinetic energy in the normal-mode representation
and in the original coordinates one readily finds the identity

�‡2�
j=1

N

� j
2 = �‡2�

j=1

N

� j
2. �62�

As a result the ratio of the VTST flux to the TST flux is

FVTST

FTST
= �M

�‡

�‡ . �63�

The analog of the Kramers-Grote-Hynes equation �24,25�
for the normal-mode barrier frequency in the presence of
spatial diffusion is obtained from Eq. �20�, except that one
substitutes the stable-mode frequency with the unstable-
mode frequency. After a bit of rearranging one finds

�‡2 +
�‡2�̂P��‡�

�‡ =
�‡2

M
, �64�

from which it follows that �M �‡

�‡ �1 and as expected the
VTST flux is lower than the TST flux. Note, however, that
Eq. �64� may also be rewritten as

�‡2

�‡2 = 1 + �‡2�
j=1

N
dj

2

� j
2 + �‡2 , �65�

showing that momentum coupling leads to a thinning of the
barrier, instead of the usual broadening of the barrier found
as a result of spatial coupling. In fact, the ratio

FVTST

F0
= �‡

�‡ ,
implying that even the minimal VTST flux is larger then the
flux in the absence of coupling. This is proof that, classically,
momentum coupling leads to an increase of the thermal para-
bolic barrier crossing rate, as compared with the absence of
coupling.

It is instructive to consider a specific example: namely,
the spectral density given in Eq. �53�. Using the reduced
values x=�‡ /�‡, wc=�c /�‡, and g=��‡ we plot in Fig. 2
the reduced barrier height as a function of the reduced mo-
mentum coupling coefficient g for three representative values
of the reduced cutoff frequency wc. As noted from the figure,
only when the cutoff frequency is large does one get an
appreciable increase in the barrier frequency. In the limit of
g�wc one has that x��gwc. In Fig. 3 we then plot the ratio
FVTST /FTST for the same parameter range as in Fig. 2. One
notes that there is an appreciable effect on the transmission
factor only when the cutoff frequency is much larger than
unity. In contrast to the spatial coupling case, here the trans-
mission factor tends to unity both in the weak- and strong-
momentum-coupling limits.

B. Quantum rate theory in the presence
of momentum coupling

Given the fact that momentum coupling causes a decrease
in the barrier width, it is interesting to study whether it could
then cause an increase in the tunneling probability, since the
tunneling probability is exponentially sensitive to the width
of the barrier. We will consider two cases. The first is trans-
mission through a parabolic barrier. The second will be con-
sideration of tunneling through an anharmonic barrier in the
limit of weak momentum coupling and at temperatures
which are below the crossover temperature between tunnel-
ing and thermal activation. We will see that the two limits
give qualitatively identical results. Above the crossover tem-
perature, where the parabolic barrier approximation is valid,
we find that momentum coupling indeed causes an increase

FIG. 2. Classical enhancement of the reactive flux as a result of
momentum coupling to a harmonic bath: The parabolic barrier fre-
quency is plotted as a function of the coupling strength for three
different values of the cutoff frequency. The reduced barrier fre-
quency is also the ratio of the exact thermal unidirectional flux to
the flux in the absence of coupling to the bath. The solid line is for
wc=10, the dashed line is for wc=4, and the dotted line is for wc

=0.5.

FIG. 3. VTST solution for the classical transmission factor
through a parabolic barrier potential as compared to choosing the
system coordinate as the reaction coordinate. The three lines corre-
spond to the same values of the cutoff frequency as in Fig. 2.
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of the rate which is even greater than the classical enhance-
ment. This is due to the thinning of the parabolic barrier. At
low temperatures, below the crossover temperature, momen-
tum coupling leads even to an exponential increase in the
tunneling rate.

1. Above the crossover temperature

In the limit of a parabolic barrier, we follow the same
reasoning as for spatial diffusion, as given in Ref. �6�. In the
absence of momentum coupling, the thermal fraction through
the barrier is

F0
Q = 2−N
�‡

2
sin 	
��‡

2

−1

�
j=1

N

sinh 	
�� j

2

−1

, �66�

while the VTST tunneling fraction is given by the same ex-
pression, except one must replace the bare frequencies ev-
erywhere with the normal-mode frequencies. One thus has
that the quantum transmission factor is

FVTST
Q

F0
Q =

�‡

�‡

sin	
��‡

2



sin	
��‡

2

 �

j=1

N sinh	
�� j

2



sinh	
�� j

2

 . �67�

However, we know that the barrier frequency �‡��‡. The
denominator with the sine function will diverge at the tem-
perature 
�c�

‡=2	; that is, the crossover temperature will
be greater than the crossover temperature in the absence of
coupling. In contrast to spatial coupling, which reduces the
crossover temperature, momentum coupling increases it. At
the crossover temperature, the quantum transmission factor
will diverge, implying that the quantum transmission factor
is indeed larger than the classical one. As noted, for the
parabolic barrier, momentum coupling enhances tunneling.

The result for the tunneling fraction has to be transformed
so that it may be expressed in the continuum limit. For this
purpose one uses the infinite product representation of the
sine and sinh functions �as detailed in Ref. �26�� as well as
the identity

det�T� + s2I� = �− �‡2 + s2��
j=1

N

�� j
2 + s2�

= 	−
�‡2

M
+ s2 + �‡2 �̂P�s�

s

�

j=1

N

�� j
2 + s2� ,

�68�

where as before T� represents the matrix of second deriva-
tives of the kinetic energy with respect to the �frequency
scaled� momenta. The last equality on the right-hand side is
obtained by carrying out explicitly the evaluation of the de-
terminant, using the frequency-scaled momenta, as given in
Eqs. �15� and �16�. One then finally finds that

FVTST
Q

F0
Q =

�‡

�‡�
k=1

�
�k

2 − �‡2

�k
2 −

�‡2

M
+ �‡2 �̂P��k�

�k



�‡

�‡�P, �69�

where �k= 2k	

� are the Matsubara frequencies and �P is the

Wolynes factor �27� associated with momentum coupling.
For the specific spectral density given in Eq. �53� one

finds that the Wolynes factor is

�P = �
k=1

�
�k

2 − �‡2

�k
2 − �‡2�1 + ��k arctan	�c

�k

� , �70�

showing clearly that the quantum enhancement of the rate
due to momentum coupling is greater than the classical en-
hancement, since in the classical limit the Wolynes factor
tends to unity. In Fig. 4 we plot this Wolynes factor as a
function of the reduced momentum coupling coefficient g
=�� and reduced cutoff frequency wc=�c /�.

FIG. 4. Macroscopic enhancement of the quantum tunneling rate
above crossover due to momentum coupling to a harmonic bath.
Panels �a�, �b�, and �c� correspond to the cutoff frequencies 10, 4,
and 0.5, respectively. In each panel we plot the dependence of the
Wolynes enhancement factor as a function of the coupling strength
for three different temperature values. Defining �=
��‡, the dot-
ted, dashed, and solid lines correspond to �=0.5, 1, and 3, respec-
tively. Note the change in scale for the coupling strength as one
goes from panel �a� to panel �c�. For low cutoff frequencies, the
enhancement is weakened.
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2. Tunneling through an anharmonic barrier below the
crossover temperature

For tunneling through an anharmonic barrier potential
V�Q� with a barrier top located at Q=Qb the escape rate � is
most conveniently calculated from the imaginary part of the
free energy and thus from the imaginary part of the partition
function of the unstable system �2,3�. In the path integral
representation one has for the reduced system

Z = Tr�e−�H� = � D�Q�e−Seff�Q�/
, �71�

where one sums over all periodic paths running in the imagi-
nary time interval 
� through the inverted barrier potential
−V�q�. Here for momentum friction the effective action is
found to read

Seff�Q� = �
0


�

d�� 1

2
Q̇���2 + V�Q� +

1

2
�

0


�

d�Q̇���

�M̃�� − ��Q̇���� , �72�

with the kernel given by

M̃��� =
1


�
�

n

ei�n�� 1

1 + �
j

dj
2 �n

2

�n
2 + � j

2

− 1�
= −

1


�
�

n

ei�n�

�
j

dj
2 �n

2

�n
2 + � j

2

1 + �
j

dj
2 �n

2

�n
2 + � j

2

= −
1


�
�

n

mnei�n�.

�73�

For high temperatures when �n→� one has

M̃���¬
��� :M� jdj
2 with M =1/ �1+� jdj

2�. Combining the
friction term with the bare kinetic term then leads to an ef-

fective kinetic term of the form MQ̇2 /2 so that friction ap-
pears simply as an effective mass. Accordingly, the thermal
activation factor ��exp�−�V�Qb�� is independent of friction
since it is determined by the constant path at the barrier top
Q=Qb, while dissipation influences the prefactor as specified
above. The same is true for lower temperatures above the
crossover when quantum fluctuations in the rate prefactor
lead to an even stronger increase of the escape rate as shown
in the previous section.

Below the crossover temperature the contribution of the
bounce orbit QB dominates the imaginary part of the partition
function and the exponential factor in the rate contains its
action SB=S�QB�—i.e., ��exp�−SB /
�. Now, let us consider
weak friction. In this case we write for the bounce path QB
=Q0+
Q, where Q0 is the bounce path in the absence of

dissipation, which obeys Q̈0−V��Q0�=0. Upon inserting QB

into the effective action �72� one finds that to lowest order in
the friction one has SB=S�Q0�+�S0 with

�S0 =
1

2
�

0


�

d��
0


�

d�Q̇0���M̃�� − ��Q̇0��� . �74�

This correction can be easily expressed in Fourier space by
using Q0= �1/
���nQn

�0� exp�i�n��, where one may choose
the phase of the bounce such that Qn

�0�=Q−n
�0�=Qn

�0�*. This way,
we find with mn=m−n and �n=−�−n that

�S0 = −
1

2
�
�

n

�Qn
�0��2�n

2mn. �75�

Apparently, �S0�0 so that SB�S0, meaning that the prob-
ability for quantum tunneling is exponentially enhanced due
to momentum friction. Physically, since the effective mass of

the combined kinetic terms M̃���+ :
���: has Fourier compo-
nents that are always smaller than 1, the particle’s kinetic
energy becomes smaller relative to its potential energy. Thus,
for a dynamical orbit like the bounce path the action de-
creases. In contrast, spatial friction leads always to a rate
suppression since effectively it provides an additional contri-
bution to the potential energy. For stronger coupling to the
heat bath the bounce orbit can easily be calculated numeri-
cally along the lines described in �28�.

IV. DISCUSSION

In this paper we analyzed the influence of a harmonic heat
bath coupled to a system with potential energy via a bilinear
interaction between the system’s momentum and the indi-
vidual momenta of the bath degrees of freedom. For a har-
monic oscillator and momentum dissipation we find as also
noted qualitatively by Cuccoli et al. �11� that the coupling to
the bath increases the delocalization of the position of the
oscillator. The thermal variance increases with increasing
coupling, exactly the opposite of the behavior found for spa-
tial coupling.

For escape over a barrier, in the high-temperature regime,
where thermal activation prevails, momentum friction leads
to an increase of the flux across the barrier. At somewhat
lower temperatures quantum fluctuations come into play and
enhance the flux even more. Above the crossover tempera-
ture between tunneling and thermal activation, friction ap-
pears only in the prefactor of the rate expression. Below the
crossover temperature, where quantum tunneling dominates,
it reduces the action of the bounce path and thus exponen-
tially increases the decay rate. In contrast to the case of spa-
tial friction, the crossover temperature increases with in-
creasing friction so that for pure momentum coupling
quantum effects would be observable even in the high-
temperature domain.

In this paper we considered the case of pure momentum
coupling. Any realistic system will be influenced by both
momentum and spatial coupling. The crucial issue is then to
what extent the latter one suppresses the impact of the former
one. Specific systems to be studied in the future in this re-
spect include molecular compounds, mesoscopic islands
coupled to fluctuating charges, and the transport of charged
particles moving under the influence of random magnetic
fields �13,14�.
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